
An Interrogative Approach to Novice Programming

Alexander Quinn
Department of Computer Science and Engineering

University of Washington
aquinn@cs.washington.edu

Abstract

Domain specific programming languages tend to be rigid
in capability and dependent on either a graphical interface
or a scripting language. We present a question-oriented
approach that requires no prior knowledge of
programming and can be easily adapted to a wide range of
domains. Interrogative programming works by "parsing"
the user's intent using the responses to a series of closed-
ended questions. Questions are guided by a context free
grammar specified in an external file. We discuss the
benefits, capabilities and limitations of interrogative
programming along with the results of recent usability
studies with our prototype.

1. Introduction and Related Approaches

The goal of end user programming is to empower users
who have no prior programming experience to solve simple
problems with computers or customize existing applications
to their own ends, without teaching them formal
programming [1].

For users, the difficulty is in bridging their concept of a
solution with the computer's accepted means of instruction.
Typically, this problem is solved with either scripting
languages, programming by example [3], or visual
programming.

Scripting languages, such as GUILE, AppleScript, or
Matlab try to make the language more accessible by
abstracting away details such as memory management and
complicated data structures. Users who invest the time to
learn are rewarded with increased power and flexibility in
their ability to customize applications or even create new
ones. However, this still requires that the user learn a
syntax and basic programming strategies. Thus, scripting
languages are usually inappropriate for true novices.

Programming by example (PBE), another common
approach, allows the user to perform actions representative
of a solution and have the computer generalize those actions
to create the desired automation. PBE bridges the gap
between concept and specification by allowing the user to
naturally select the data to be operated on in a graphical
environment [4] and communicate the desired operations in

an environment the user is already familiar with. However,
it usually limits the kinds of programs that can be created to
repetition of tedious tasks.

Visual languages are a class of programming languages
that allow the user to use diagrams or other visual means to
specify the solution to a problem. While they often provide
a more intuitive and richer means of specification than
conventional textual languages, developing the right visual
abstractions can be difficult so they can be hard to scale to
large applications [2].

We discuss how some of the limitations of each of these
can be overcome through a new approach called
interrogative programming. Interrogative programming is
a means of extracting the user's intent through a line of
questioning based on closed-ended questions. We show
how this method offers generality, accessibility, and
flexibility to end-user programming.

Throughout this paper, we use the terms end-user
programming and novice programming interchangeably.
Novice programming is programming in an environment
that makes programming more natural for
non-programmers [1]. End-user programming is
programming by either programmers or non-programmers
where the programming is not the focus of the activity.
Interrogative programming can fit into both categories.

2. Description of Interrogative Programming

Interrogative programming tries to discover what the
user wants by asking a series of closed ended questions. An
answer will be either a selection from a list of choices or the
raw input of a string or number. Each choice clarifies some
aspect of the program. While the approach is not domain
specific, a particular implementation is.

2.1. Example: Print the Numbers 1 to 10

The following example shows how a toy implementation
could be used to create a program to count to 10. Useful
programs are certainly possible, but small examples like this
are best for illustration. This is a condensed version of what
you would see in a real interrogative programming system.

Computer: This system lets you create trivial examples.
Does this sound like what you want?
1. Yes
2. No

User: 1
Computer: To create a trivial example, you need to

specify one or more instructions. Please pick one.
1. Print something to the screen.
2. Set or change the value of a variable.
3. Repeat some actions a certain number of times.

User: 3
Computer: Enter the number of times to repeat.
User: 10
Computer: You need to specify the first instruction for

the program to repeat. Please pick one.
1. Print something to the screen.
2. Set or change the value of a variable.
3. Repeat some actions a certain number of times.

User: 1
Computer: To print something to the screen, you need

to specify what to print. Please pick one.
1. A particular string of text.
2. The value of one of your variables.
3. Today's date.
4. The number of times the actions have been
repeated.

User: 4
Computer: You may specify another instruction for your

loop if you like. Please pick one.
1. Print something to the screen.
2. Set or change the value of a variable.
3. Repeat some actions a certain number of times.
4. Stop specifying actions.

User: 4
Computer: You may specify another instruction for the

program if you like. Please pick one.
1. Print something to the screen.
2. Set or change the value of a variable.
3. Repeat some actions a certain number of times.
4. Stop specifying actions.

User: 4
Computer: Your program is almost complete. Please

enter a file name for your program so you can run it
later.

User: count
Computer: Thank you. Your program is complete.

Notice that the system would allow the user to create
control flow that would be difficult or impossible to achieve
with a PBE system. Also, all of the questions are in English
and the user always knows what the system is capable of.
This is an unappreciated feature of dialog based systems.

2.2. Theoretical Foundations

How is this different from an application wizard? With
interrogative programming, all of the questions are based on
a context free grammar that describes the kinds of programs
that can be created with a given implementation. For
example, in the previous example, the third question is
based on a production like this.

STATEMENT ::= PRINT_STMT |
ASSIGNMENT_STMT |
LOOP

The process of creating a program is similar to the way a
top down recursive-descent parser analyzes the syntax of a
traditional program except that instead of deciding
productions based on a lexeme stream, it asks the user
questions to determine which non-terminals to take.

3. IPS: A Prototype

We have constructed a console-based prototype called
IPS (Interrogative Programming System) that allows a user
to create a stand-alone executable by answering a series of
closed-ended questions, similar to the example above.

Besides the user's input, IPS takes a special "domain
file" as input. A domain file is a specification of a context
free grammar along with other information to guide the
dialog and code generation. The use of domain files allows
the same system to be easily adapted to many different
domains. Domain files work much like the grammar files
that are used with yacc-style parser generators.

A domain file could be written by any programmer to
suit some application. Just as a yacc user need not know the
inner details of yacc to create a parser, it is not necessary to
understand the workings of IPS to write a domain file. The
domain file specifies the grammar, the skeleton code, and
English phrases to support the dialog. IPS does the
interaction and intent parsing. Domain files must be

Figure 1: IPS architecture

Programmer

Novice
Programmer

Domain File

Domain File
Compiler

Compiled
Domain File

Intent Parser
(IPS)

Final
Executable

compiled into a special “compiled” form and checked
before they can be used. Figure 1 shows how this all fits
together.

IPS generates a file with source code. Like a compiler,
it first builds an abstract syntax tree (AST) as it parses the
user's intent. At the end, the AST is evaluated and a file is
written with a name specified by the user. Much like in a
yacc grammar, the domain file contains code with
placeholders like "$1" and "$2" which are replaced by
synthesized attributes.

It is important to note that IPS is independent of the
target programming language. For example, we have
created domain files that output Python, Java, C, and
HTML files.

4. Usability Studies

Two formal usability studies were conducted to evaluate
the usability and expected utility of our prototype. A total
of 13 subjects were paid $10 each to meet a researcher
individually at an academic research lab and voluntarily
spend an hour working with IPS. All subjects were adults,
ages 18 to 55 who used a computer at least 5 days per week
but had never written a computer program in any language
that supports loops or other control flow. The two usability
studies were done with very similar methodology and
conditions. Usability improvements were made to IPS after
the first study. We discuss only the results of the second
study which used 10 of the participants.

In the second study, subjects were given three simple
programming tasks to accomplish using IPS. They were
asked to create a “Hello world” program, create a program
to print the average of two integers supplied by the user of
the program, and create a program to print a pattern with
asterisks.

We were specifically trying to test whether or not people
could engage in a problem with such a system.
Performance was fairly low, but we did see some promising
results. All subjects solved the first problem without any
difficulty. Only one subject (10%) solved the second
problem, computing the average of two numbers. This low
performance was expected because the wording and
structure of the questions were very close to real
programming, with references to integer variables and such.
The most common problem we saw was that subjects were
focused on the final objective of printing an average, rather
than the steps necessary to collect the information and then
process it. Four (40%) subjects chose as the first action in
the program, an option to "Do a calculation" where they
should have chosen an option to "Collect some keyboard
input from the user." The third problem, printing the
design, did not use the programming terminology. Five
subjects (50%) solved it without any assistance and four
(40%) solved it with a small hint.

People seemed to understand the basic idea and all

subjects were able to make substantial progress toward at
least two of the problems. One reason for the low
performance might be that they felt pressured because the
test was only an hour long. One subject noted that if he
were using such a system at home rather than in a test
setting, he would be more likely to explore help features.

5. Conclusion and Future Work

We have made substantial progress in developing
interrogative programming as a paradigm and
demonstrating it with a prototype. However, we have
several unsolved problems which will be explored in future
research.

First, there is currently no way to edit programs.
Without this, a user can only write programs which can be
made correctly the first time. We are considering both
graphical solutions and natural language solutions to this.

Also, in order to be truly useful, interrogative
programming would have to support functional
decomposition. Allowing the user to create functions would
require different kinds of dialog because the dialog would
have to switch between the context of the “main” function
and a function which was being defined.

Finally, the current system forces the novice programmer
to solve all problems in a depth-first manner. Until one step
is fully specified, the novice programmer cannot go on to
the next step. We have looked at graphical solutions to this
as well as simply allowing the user to defer answering a
question.

6. Acknowledgments

We gratefully acknowledge Steven Tanimoto and
Jeremy Moody for help in developing the concept and this
paper, Batya Friedman for providing advice and space for
the usability studies, and the thirteen anonymous usability
study participants for their time and constructive feedback.

7. References

[1] D. Gilligan, "An Exploration of Programming by
Demonstration in the Domain of Novice Programming",
Master's thesis at Victoria University of Wellington,
Wellington, New Zealand, August 1998.

[2] R. Jamal, L. Wenzel, “The Applicability of the Visual
Programming Language LabVIEW to Large Real-World
Applications”, Proceedings of the 11th International IEEE
Symposium on Visual Languages, Darmstadt, Germany, p.
1, 1995.

[3] D. C. Smith, A. Cypher, L. Tesler, "Novice Programming
Comes of Age", Your Wish Is My Command:
Programming by Example, Morgan Kaufmann, San
Francisco, February 2001.

[4] R. St. Amant, H. Lieberman, R. Potter, L. Zettlemoyer,
"Visual Generalization in Programming by Example",
Your Wish Is My Command: Programming by Example,
Morgan Kaufmann, San Francisco, February 2001.

